
Await and tasks from the 
ground up

Jiří Činčura

www.tabsoverspaces.com

@cincura_net

http://www.tabsoverspaces.com/


Source: preshing.com



Current state of CPUs

• Free lunch is over
• 22nm => 50 silicon atoms

• Cooling, frequency

• Smarter processors
• Hyperthreading

• More cores



Coarse-grained parallelism

• Processes are expensive

• Threads are expensive

• A lot of threads ➔ context switching

• No cake for developers?



ThreadPool

• OK-ish solution for 2018
• Limited features

• A lot of manual work required

• Tasks to saves us?



Tasks

• Task Parallel Library

• Rich API

• Easy to use (and even easier with async/await)

• Uses ThreadPool
• Usually ☺



CPU bound vs I/O bound code

• Threads and tasks vs asynchronous I/O
• Overlapped I/O

• Asynchronous
• No blocking

• Scalability

• Concurrency

• For I/O there’s no “background thread”



There’s no “background thread”?

• My code ➔ BCL ➔ OS/Kernel ➔ IRP

• ISR ➔ DPC ➔ APC ➔ IOCP



CPU bound vs I/O bound code
public List<Something> LoadSomething()
{
var result = new List<Something>();
for (var i = 1; i <= 5; i++)
{

var s = Something.LoadFromNetwork(id: i);
result.Add(s);

}
return result;

}



CPU bound vs I/O bound code

work1

work2

work3

work4

work5

Source: Lucian Wischik



CPU bound vs I/O bound code

3

response out
300ms

work1 work2

work3 work4

work5

Parallel.For

Source: Lucian Wischik



CPU bound vs I/O bound code

end1

start1

end2

start2

end3

start3

end4

start4

end5

start5

Source: Lucian Wischik



CPU bound vs I/O bound code

end2

start1

start2
start3
start4
start5

response out
~100ms

end5

end1

end3
end4

Source: Lucian Wischik



Before async/await

• Asynchronous Programming Model
• BeginXxx, EndXxx

• Try to read stream…



Async/await

• Simpler code for callbacks
• Compiler solves the plumbing

• State machine (similar to IEnumerable<T>)

• For-loops, usings, try-catch blocks, …

• But could be hard to master
• i.e. deadlocks, performance degradation

• Try to read stream v2…



Async/await

• Works basically on Task/Task<T>/ValueTask<T>

• CPU or I/O bound

• CPU bound tasks
• Delegate tasks

• I/O bound tasks
• Promise tasks



Q & A


